69 research outputs found

    Stars quenching stars: how photoionization by local sources regulates gas cooling and galaxy formation

    Full text link
    Current models of galaxy formation lack an efficient and physically constrained mechanism to regulate star formation (SF) in low and intermediate mass galaxies. We argue that the missing ingredient could be the effect of photoionization by local sources on the gas cooling. We show that the soft X-ray and EUV flux generated by SF is able to efficiently remove the main coolants (e.g., HeII, OV and FeIX) from the halo gas via direct photoionization. As a consequence, the cooling and accretion time of the gas surrounding star-forming galaxies may increase by one or two orders of magnitude. For a given halo mass and redshift, the effect is directly related to the value of the star formation rate (SFR). Our results suggest the existence of a critical SFR above which "cold" mode accretion is stopped, even for haloes with virial masses well below the critical shock-heating mass suggested by previous studies.The evolution of the critical SFR with redshift, for a given halo mass, resembles the respective steep evolution of the observed SFR for z<1. This suggests that photoionization by local sources would be able to regulate gas accretion and star formation, without the need for additional, strong feedback processes.Comment: 5 pages, 3 figures, accepted for publication in MNRAS Letter

    A time-domain control signal detection technique for OFDM

    Get PDF
    Transmission of system-critical control information plays a key role in efficient management of limited wireless network resources and successful reception of payload data information. This paper uses an orthogonal frequency division multiplexing (OFDM) architecture to investigate the detection performance of a time-domain approach used to detect deterministic control signalling information. It considers a type of control information chosen from a finite set of information, which is known at both transmitting and receiving wireless terminals. Unlike the maximum likelihood (ML) estimation method, which is often used, the time-domain detection technique requires no channel estimation and no pilots as it uses a form of time-domain correlation as the means of detection. Results show that when compared with the ML method, the time-domain approach improves detection performance even in the presence of synchronisation error caused by carrier frequency offset

    End-to-End Joint Antenna Selection Strategy and Distributed Compress and Forward Strategy for Relay Channels

    Full text link
    Multi-hop relay channels use multiple relay stages, each with multiple relay nodes, to facilitate communication between a source and destination. Previously, distributed space-time codes were proposed to maximize the achievable diversity-multiplexing tradeoff, however, they fail to achieve all the points of the optimal diversity-multiplexing tradeoff. In the presence of a low-rate feedback link from the destination to each relay stage and the source, this paper proposes an end-to-end antenna selection (EEAS) strategy as an alternative to distributed space-time codes. The EEAS strategy uses a subset of antennas of each relay stage for transmission of the source signal to the destination with amplify and forwarding at each relay stage. The subsets are chosen such that they maximize the end-to-end mutual information at the destination. The EEAS strategy achieves the corner points of the optimal diversity-multiplexing tradeoff (corresponding to maximum diversity gain and maximum multiplexing gain) and achieves better diversity gain at intermediate values of multiplexing gain, versus the best known distributed space-time coding strategies. A distributed compress and forward (CF) strategy is also proposed to achieve all points of the optimal diversity-multiplexing tradeoff for a two-hop relay channel with multiple relay nodes.Comment: Accepted for publication in the special issue on cooperative communication in the Eurasip Journal on Wireless Communication and Networkin

    A High Throughput Configurable SDR Detector for Multi-user MIMO Wireless Systems

    Get PDF
    Spatial division multiplexing (SDM) in MIMO technology significantly increases the spectral efficiency, and hence capacity, of a wireless communication system: it is a core component of the next generation wireless systems, e.g. WiMAX, 3GPP LTE and other OFDM-based communication schemes. Moreover, spatial division multiple access (SDMA) is one of the widely used techniques for sharing the wireless medium between different mobile devices. Sphere detection is a prominent method of simplifying the detection complexity in both SDM and SDMA systems while maintaining BER performance comparable with the optimum maximum-likelihood (ML) detection. On the other hand, with different standards supporting different system parameters, it is crucial for both base station and handset devices to be configurable and seamlessly switch between different modes without the need for separate dedicated hardware units. This challenge emphasizes the need for SDR designs that target the handset devices. In this paper, we propose the architecture and FPGA realization of a configurable sort-free sphere detector, Flex-Sphere, that supports 4, 16, 64-QAM modulations as well as a combination of 2, 3 and 4 antenna/user configuration for handsets. The detector provides a data rate of up to 857.1 Mbps that fits well within the requirements of any of the next generation wireless standards. The algorithmic optimizations employed to produce an FPGA friendly realization are discussed.Xilinx Inc.National Science Foundatio

    Specific star-formation and the relation to stellar mass from 0<z<2 as seen in the far-infrared at 70 and 160mu

    Get PDF
    We use the Spitzer Wide-area InfraRed Extragalactic Legacy Survey (SWIRE) to explore the specific star-formation activity of galaxies and their evolution near the peak of the cosmic far-infrared (FIR) background at 70 and 160um. We use a stacking analysis to determine the mean FIR properties of well defined subsets of galaxies at flux levels well below the FIR catalogue detection limits of SWIRE and other Spitzer surveys. We tabulate the contribution of different subsets of galaxies to the FIR background at 70um and 160um. These long wavelengths provide a good constraint on the bolometric, obscured emission. The large area provides good constraints at low z and in finer redshift bins than previous work. At all redshifts we find that the specific FIR Luminosity (sLFIR) decreases with increasing mass, following a trend L_FIR/M* propto M_* ^beta with beta =-0.38\pm0.14. This is a more continuous change than expected from the {Delucia2007} semi-analytic model suggesting modifications to the feedback prescriptions. We see an increase in the sLFIR by about a factor of ~100 from 0<z<2 and find that the sLFIR evolves as (1+z)^alpha with alpha=4.4\pm0.3 for galaxies with 10.5 < log M*/Msun < 12. This is considerably steeper than the {Delucia2007} semi-analytic model (alpha \sim 2.5). When separating galaxies into early and late types on the basis of the optical/IR spectral energy distributions we find that the decrease in sLFIR with stellar mass is stronger in early type galaxies (beta ~ -0.46), while late type galaxies exhibit a flatter trend (beta \sim -0.15). The evolution is strong for both classes but stronger for the early type galaxies. The early types show a trend of decreasing strength of evolution as we move from lower to higher masses while the evolution of the late type galaxies has little dependence on stellar mass. We suggest that in late-type galaxies we are seeing a consistently declining sSFR..Comment: v2 Update doesn't change the content of the paper, but now includes data files for the plots Fig 5-13 (all.plotdat, spi.plotdat and ell.plotdat on arXiv package

    Enriched haloes at redshift z=2z=2 with no star-formation: Implications for accretion and wind scenarios

    Full text link
    [Abridged] In order to understand which process (e.g. galactic winds, cold accretion) is responsible for the cool (T~10^4 K) halo gas around galaxies, we embarked on a program to study the star-formation properties of galaxies selected by their MgII absorption signature in quasar spectra. Specifically, we searched for the H-alpha line emission from galaxies near very strong z=2 MgII absorbers (with rest-frame equivalent width EW>2 \AA) because these could be the sign-posts of outflows or inflows. Surprisingly, we detect H-alpha from only 4 hosts out of 20 sight-lines (and 2 out of the 19 HI-selected sight-lines), despite reaching a star-formation rate (SFR) sensitivity limit of 2.9 M/yr (5-sigma) for a Chabrier initial mass function. This low success rate is in contrast with our z=1 survey where we detected 66%\ (14/21) of the MgII hosts. Taking into account the difference in sensitivity between the two surveys, we should have been able to detect >11.4 of the 20 z=2 hosts whereas we found only 4 galaxies. Interestingly, all the z=2 detected hosts have observed SFR greater than 9 M/yr, well above our sensitivity limit, while at z=1 they all have SFR less than 9 M/yr, an evolution that is in good agreement with the evolution of the SFR main sequence. Moreover, we show that the z=2 undetected hosts are not hidden under the quasar continuum after stacking our data and that they also cannot be outside our surveyed area. Hence, strong MgII absorbers could trace star-formation driven winds in low-mass halos (Mhalo < 10^{10.6} Msun). Alternatively, our results imply that z=2 galaxies traced by strong MgII absorbers do not form stars at a rate expected (3--10 M/yr) for their (halo or stellar) masses, supporting the existence of a transition in accretion efficiency at Mhalo ~ 10^{11} Msun. This scenario can explain both the detections and the non-detections.Comment: 14 pages, 4 fig.; MNRAS in press, minor corrections to match proof

    Correction of anaemia through the use of darbepoetin alfa improves chemotherapeutic outcome in a murine model of Lewis lung carcinoma

    Get PDF
    Darbepoetin alfa (Aranesp®, Amgen) is a novel erythropoiesis-stimulating protein with a serum half-life longer than recombinant human erythropoietin (Epo), used in the treatment of cancer-associated anaemia. Anaemia is known to adversely affect prognosis and response to treatment in cancer patients. Solid tumours contain regions of hypoxia due to poor vascular supply and cellular compaction. Although hypoxic stress usually results in cell death, hypoxia-resistant tumour cells are genetically unstable and often acquire a drug-resistant phenotype. Increasing tumour oxygenation and perfusion during treatment could have the doubly beneficial outcome of reducing the fraction of treatment-resistant cells, while increasing drug delivery to previously hypoxic tissue. In this study, we examined the effect of darbepoetin alfa on chemotherapy sensitivity and delivery in an in vivo model of Lewis lung carcinoma, shown here to express the Epo receptor (EpoR). We identified that weekly darbepoetin alfa treatment, commencing 10 days before chemotherapy, resulted in a significant reduction in tumour volume compared to chemotherapy alone. This was mediated by the prevention of anaemia, a reduction in tumour hypoxia and a concomitant increase in drug delivery. Darbepoetin alfa treatment alone did not modulate the growth of the EpoR-expressing tumour cells. This study identifies an important role for darbepoetin alfa in increasing the therapeutic index of chemotherapy

    Pre-Bilaterian Origins of the Hox Cluster and the Hox Code: Evidence from the Sea Anemone, Nematostella vectensis

    Get PDF
    BACKGROUND: Hox genes were critical to many morphological innovations of bilaterian animals. However, early Hox evolution remains obscure. Phylogenetic, developmental, and genomic analyses on the cnidarian sea anemone Nematostella vectensis challenge recent claims that the Hox code is a bilaterian invention and that no “true” Hox genes exist in the phylum Cnidaria. METHODOLOGY/PRINCIPAL FINDINGS: Phylogenetic analyses of 18 Hox-related genes from Nematostella identify putative Hox1, Hox2, and Hox9+ genes. Statistical comparisons among competing hypotheses bolster these findings, including an explicit consideration of the gene losses implied by alternate topologies. In situ hybridization studies of 20 Hox-related genes reveal that multiple Hox genes are expressed in distinct regions along the primary body axis, supporting the existence of a pre-bilaterian Hox code. Additionally, several Hox genes are expressed in nested domains along the secondary body axis, suggesting a role in “dorsoventral” patterning. CONCLUSIONS/SIGNIFICANCE: A cluster of anterior and posterior Hox genes, as well as ParaHox cluster of genes evolved prior to the cnidarian-bilaterian split. There is evidence to suggest that these clusters were formed from a series of tandem gene duplication events and played a role in patterning both the primary and secondary body axes in a bilaterally symmetrical common ancestor. Cnidarians and bilaterians shared a common ancestor some 570 to 700 million years ago, and as such, are derived from a common body plan. Our work reveals several conserved genetic components that are found in both of these diverse lineages. This finding is consistent with the hypothesis that a set of developmental rules established in the common ancestor of cnidarians and bilaterians is still at work today

    Travelling-wave ion mobility and negative ion fragmentation of high-mannoseN-glycans

    Get PDF
    The isomeric structure of high-mannose N-glycans can significantly impact biological recognition events. Here, the utility of travelling-wave ion mobility mass spectrometry for isomer separation of high-mannose N-glycans is investigated. Negative ion fragmentation using collision-induced dissociation gave more informative spectra than positive ion spectra with mass-different fragment ions characterizing many of the isomers. Isomer separation by ion mobility in both ionization modes was generally limited, with the arrival time distributions (ATD) often showing little sign of isomers. However, isomers could be partially resolved by plotting extracted fragment ATDs of the diagnostic fragment ions from the negative ion spectra, and the fragmentation spectra of the isomers could be extracted by using ions from limited areas of the ATD peak. In some cases, asymmetric ATDs were observed, but no isomers could be detected by fragmentation. In these cases, it was assumed that conformers or anomers were being separated. Collision cross sections of the isomers in positive and negative fragmentation mode were estimated from travelling-wave ion mobility mass spectrometry data using dextran glycans as calibrant. More complete collision cross section data were achieved in negative ion mode by utilizing the diagnostic fragment ions. Examples of isomer separations are shown for N-glycans released from the well-characterized glycoproteins chicken ovalbumin, porcine thyroglobulin and gp120 from the human immunodeficiency virus. In addition to the cross-sectional data, details of the negative ion collision-induced dissociation spectra of all resolved isomers are discussed
    corecore